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Abstract

Algorithmic recourse recommendations, such as Karimi et
al.’s (2021) causal recourse (CR), inform stakeholders of how
to act to revert unfavorable decisions. However, there are ac-
tions that lead to acceptance (i.e., revert the model’s deci-
sion) but do not lead to improvement (i.e., may not revert the
underlying real-world state). To recommend such actions is
to recommend fooling the predictor. We introduce a novel
method, Improvement-Focused Causal Recourse (ICR), which
involves a conceptual shift: Firstly, we require ICR recommen-
dations to guide toward improvement. Secondly, we do not
tailor the recommendations to be accepted by a specific predic-
tor. Instead, we leverage causal knowledge to design decision
systems that predict accurately pre- and post-recourse. As a
result, improvement guarantees translate into acceptance guar-
antees. We demonstrate that given correct causal knowledge
ICR, in contrast to existing approaches, guides toward both
acceptance and improvement.

1 Introduction
Predictive systems are increasingly deployed for high-stakes
decisions, for instance in hiring (Raghavan et al. 2020), ju-
dicial systems (Zeng, Ustun, and Rudin 2017), or when dis-
tributing medical resources (Obermeyer and Mullainathan
2019). A range of work (Wachter, Mittelstadt, and Russell
2017; Ustun, Spangher, and Liu 2019; Karimi, Schölkopf,
and Valera 2021) develops tools that offer individuals possi-
bilities for so-called algorithmic recourse (i.e., actions that
revert unfavorable decisions). Joining previous work in the
field, we distinguish between reverting the model’s prediction
Ŷ (acceptance) and reverting the underlying real-world state
Y (improvement) and argue that recourse should lead to ac-
ceptance and improvement (Ustun, Spangher, and Liu 2019;
Barocas, Selbst, and Raghavan 2020). Existing methods, such
as counterfactual explanations (CE; Wachter, Mittelstadt, and
Russell (2017)) or causal recourse (CR; Karimi, Schölkopf,
and Valera (2021)), ignore the underlying real-world state
and only optimize for acceptance. Since ML models are not
designed to predict accurately in interventional environments
(i.e., environments where actions have changed the data distri-
bution), acceptance does not necessarily imply improvement.
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Figure 1: Directed Acyclic Graph (DAG) illustrating the per-
spectives of counterfactual explanations (CE, left) and causal
recourse (CR, center) in contrast to improvement-focused re-
course (ICR, right). Green edges represent real-world causal
links, and blue edges the prediction model. Gray nodes rep-
resent covariates, and the red (yellow) node is the primary
(secondary) recourse target. CR respects causal relationships
but solely between input features; only ICR takes the target Y
into account. While CE and CR aim to revert the prediction
Ŷ , ICR aims to revert the target Y .

Let us consider an example. We aim to predict whether hos-
pital visitors without test certificate are infected with Covid
to restrict access to tested and low-risk individuals. Here, the
model’s prediction Ŷ represents whether someone is classi-
fied to be infected, whereas the target Y represents whether
someone is actually infected. Target and prediction differ in
how they are affected by actions: Intervening on the symp-
toms may change the model’s diagnosis Ŷ , but will not affect
whether someone is infected (Y ).
Both counterfactual explanations (CE) and causal recourse
(CR) only target Ŷ (Figure 1). Therefore, CE and CR may
suggest altering the symptoms (e.g., by taking cough drops)
and thereby may recommend to game the predictor: Although
the intervention leads to acceptance, the actual Covid risk Y
is not improved.1
One may argue that this is an issue of the prediction model
and may adapt the predictor to make gaming less lucrative
than improvement (Miller, Milli, and Hardt 2020). However,
such adaptions would come at the cost of predictive per-
formance – even in light of causal knowledge. The reason
is that gameable variables can be highly predictive (Shavit,
Edelman, and Axelrod 2020); In our example, the model’s re-
liance on the symptom state would need to be reduced. Thus,
we tackle the problem by adjusting the explanation instead.

1In E.1, the case is formally demonstrated.



Contributions We present improvement-focused causal re-
course (ICR), the first recourse method that targets improve-
ment instead of acceptance. Since estimating the effects of
actions is a causal problem, causal knowledge is required.
More specifically, we show how to exploit either knowledge
of the structural causal model (SCMs) or the causal graph
to guide toward improvement (Section 5). On a conceptual
level, we argue that the individual’s improvement options
should not be limited by an acceptance constraint (Section
4). To nevertheless yield acceptance, we show how to ex-
ploit said causal knowledge to design post-recourse decision
systems that recognize improvement (Section 6), such that
improvement guarantees translate into acceptance guarantees
(Section 7). On synthetic and semi-synthetic data, we demon-
strate that ICR, in contrast to existing approaches, leads to
improvement and acceptance (Section 8).

2 Related Work
Constrastive Explanations Contrastive explanations ex-
plain decisions by contrasting them with alternative decision
scenarios (Karimi et al. 2020a; Stepin et al. 2021); a well-
known example are counterfactual explanations (CE) that
highlight the minimal feature changes required to revert the
decision of a predictor f̂(x) (Wachter, Mittelstadt, and Rus-
sell 2017; Dandl et al. 2020). However, CEs are ignorant of
causal dependencies in the data and thus, in general, fail to
guide action (Karimi, Schölkopf, and Valera 2021). In con-
trast, the causal recourse (CR) framework by Karimi et al.
(2022) takes the causal dependencies between covariates into
account: More specifically, Karimi et al. (2022) use structural
causal models or causal graphs to guide individuals towards
acceptance.2 The importance of improvement was discussed
before (Ustun, Spangher, and Liu 2019; Barocas, Selbst, and
Raghavan 2020), but as of now, no improvement-focused
recourse method has been proposed.

Strategic Classification The related field of strategic mod-
eling investigates how the prediction mechanism incentivizes
rational agents (Hardt et al. 2016; Tsirtsis and Gomez Ro-
driguez 2020). A range of work (Bechavod et al. 2020; Chen,
Wang, and Liu 2020; Miller, Milli, and Hardt 2020) thereby
distinguishes models that incentivize gaming (i.e., interven-
tions that affect the prediction Ŷ but not the underlying target
Y in the desired way) and improvement (i.e., actions that
also yield the desired change in Y ). Strategic modeling is
concerned with adapting the model, where except for special
cases, the following three goals are in conflict: incentiviz-
ing improvement, predictive accuracy, and retrieving the true
underlying mechanism (Shavit, Edelman, and Axelrod 2020).

3 Background and Notation
Prediction model We assume binary probabilistic predic-
tors and cross-entropy loss, such that the optimal score func-
tion h∗(x) models the conditional probability P (Y = 1|X =
x), which we abbreviate as p(y|x). We denote the estimated
score function as ĥ(x), which can be transformed into the

2For the interested reader, we formally introduce CR in our
notation in A.4.

binary decision function f̂(x) := [ĥ(x) ≥ t] via the decision
threshold t.

Causal data model We model the data generating pro-
cess using a structural causal model (SCM)M ∈ Π (Pearl
2009; Peters, Janzing, and Schölkopf 2017). The model
M = 〈X,U,F〉 consists of the endogenous variablesX ∈ X ,
the mutually independent exogenous variables U ∈ U , and
structural equations F : U → X . Each structural equation fj
specifies how Xj is determined by its endogenous causes and
the corresponding exogenous variable Uj . The SCM entails
a directed graph G, where variables are connected to their
direct effects via a directed edge.
The index set of endogenous variables is denoted as D. The
parent indexes of node j are referred to as pa(j), and the chil-
dren indexes as ch(j). We refer to the respective variables
as Xpa(j). We write Xpa(j) to denote all parents excluding
Y and (X,Y )pa(j) to denote all parents including Y . All
ascendant indexes of a set S are denoted as asc(S), its com-
plement as nasc(S), all descendant indexes as d(S), and its
complement as nd(S).
SCMs allow answering causal questions. This means that they
cannot only be used to describe (conditional) distributions
(observation, rung 1 on Pearl’s ladder of causation (Pearl
2009)) but can also be used to predict the (average) effect of
actions do(x) (intervention, rung 2) and imagine the results
of alternative actions in light of factual observation (x, y)F

(counterfactuals, rung 3).
As such, we model actions as structural interventions a :
Π → Π, which can be constructed as do(a) = do({Xi :=
θi}i∈I), where I is the index set of features to be intervened
upon. A model of the interventional distribution can be ob-
tained by fixing the intervened upon values to θI (e.g., by
replacing the structural equation fI := θI ). Counterfactu-
als can be computed in three steps (Pearl 2009): First, the
factual distribution of exogenous variables U given the fac-
tual observation of the endogenous variables xF is inferred
(abduction) (i.e., P (Uj |XF )). Second, the structural inter-
ventions corresponding to do(a) are performed (action). Fi-
nally, we can sample from the counterfactual distribution
P (XSCF |X = xF , do(a)) using the abducted noise and the
intervened-upon structural equations (prediction).

4 The Two Tales of Contrastive Explanations
In the introduction, we demonstrated that CE and CR might
suggest gaming the predictor (i.e., guide towards acceptance
without improvement). To tackle the issue, we will introduce
a new explanation technique called improvement-focused
causal recourse (ICR) in Section 5.
In this section, we lay the conceptual justification for our
method. More specifically, we argue that for recourse, the
acceptance constraint of CR should be replaced by an im-
provement constraint. Therefore, we first recall that a multi-
tude of goals may be pursued with contrastive explanations
(Wachter, Mittelstadt, and Russell 2017) and separate two
purposes of contrastive explanations: contestability of algo-
rithmic decisions and actionable recourse. We then argue
that improvement is an essential requirement for recourse
and that the individual’s options for improvement should not



be limited by acceptance constraints.

Contestability and recourse are distinct goals. Contesta-
bility is concerned with the question of whether the algorith-
mic decision is correct according to common sense, moral
or legal standards. Explanations may help model authorities
to detect violations of such standards or enable explainees
to contest unfavorable decisions (Wachter, Mittelstadt, and
Russell 2017; Freiesleben 2021). Explanations that aim to
enable contestability must reflect the model’s rationale for
an algorithmic decision. Recourse recommendations, on the
other hand, need to satisfy various constraints unrelated to
the model, such as causal links between variables (Karimi,
Schölkopf, and Valera 2021) or their actionability (Ustun,
Spangher, and Liu 2019). Consequently, explanations geared
to contest are more complete and true to the model, while
recourse recommendations are more selective and true to
the underlying process.3 We believe that the selectivity and
reliance of recourse recommendations on factors besides the
model itself is not a limitation but an indispensable condition
for making explanations more relevant to the explainee.

In the context of recourse, improvement is desirable for
model authority and explainee. We consider improve-
ment an important normative requirement for recourse, both
with respect to explainee and model authority. Valuable re-
course recommendations enable explainees to plan and act;
thus, such recommendations must either provide indefinite
validity or a clear expiration date (Wachter, Mittelstadt, and
Russell 2017; Barocas, Selbst, and Raghavan 2020; Venkata-
subramanian and Alfano 2020). Problematically, when model
authorities give guarantees for non-improving recourse, this
constitutes a binding commitment to misclassification. How-
ever, if model authorities do not provide recourse guaran-
tees over time, this diminishes the value of recourse rec-
ommendations to explainees. They might invest effort into
non-improving actions that ultimately do not even lead
to acceptance because the classifier changed.4 In contrast,
improvement-focused recourse is honored by any accurate
classifier. We conclude that, given these advantages for both
model authority and explainee, recourse recommendations
should help to improve the underlying target Y .5

Improvement should come first, acceptance second.
Taken that we constrain the optimization on improvement,
how to guarantee acceptance remains an open question.
One approach would be to constrain the optimization on both
improvement and acceptance. However, a restriction on ac-
ceptance is either redundant or, from our moral standpoint,

3We do not claim that recourse and contestability always diverge;
we only describe a difference in focus. If contesting is successful, it
may even provide an alternative route toward recourse.

4For instance, in the introductory example, an intervention on the
symptom state would only be honored by a refit of the model on pre-
and post-recourse data for the small percentage of individuals who
were already vaccinated, as documented in more detail in E.1. Also,
gaming actions may not be robust concerning model multiplicity, as
seen in the experiments (Section 8).

5We do not claim that gaming is necessarily bad; it may be
justified when predictors perform morally questionable tasks.

questionable: If improvement implies acceptance, the con-
straint is redundant; In the remaining cases, we can predict
improvement with the available causal knowledge but would
withhold these (potentially less costly) improvement options
because of the limitations of the observational predictor.
To guarantee acceptance without restricting improvement
options, we do not restrict the optimization on acceptance
but ensure that the post-recourse predictor can recognize im-
provements (rendering the acceptance constraint redundant).
More specifically, we exploit the assumed causal knowledge
to design accurate post-recourse predictors (Section 6) for
which acceptance guarantees follow from improvement guar-
antees (Section 7).

5 Improvement-Focused Causal Recourse
(ICR)

We continue with the formal introduction of ICR, an explana-
tion technique that targets improvement (Y = 1) instead of
acceptance (Ŷ = 1). Therefore we first define the improve-
ment confidence γ, which can be optimized to yield ICR.
Like previous work in the field (Karimi et al. 2020b), we
distinguish two settings: In the first setting, knowledge of the
SCM can be assumed, such that we can leverage structural
counterfactuals (rung 3 on Pearl’s ladder of causation) to
introduce the individualized improvement confidence γind.
In the second setting only the causal graph is known, which
we exploit to propose the subpopulation-based improvement
confidence γsub (rung 2).

Individualized improvement confidence For the individ-
ualized improvement confidence γind we exploit knowledge
of a SCM. SCMs can be used to answer counterfactual ques-
tions (rung 3). In contrast to rung-2-predictions, counterfac-
tuals are tailored to the individual and their situation (Pearl
2009): They ask what would have been if one had acted differ-
ently and thereby exploit the individual’s factual observation.
Given unchanged circumstances, counterfactuals can be seen
as individualized causal effect predictions.
In contrast to existing SCM-based recourse techniques
(Karimi et al. 2022) we include both the prediction Ŷ and
the target variable Y as separate variables in the SCM. As a
result, the SCM can be used not only to model the individu-
alized probability of acceptance but also the individualized
probability of improvement.

Definition 1 (Individualized improvement confidence). For
pre-recourse observation xpre and action a we define the
individualized improvement confidence as

γind(a) = γ(a, xpre) := P (Y post = 1|do(a), xpre).

Since the pre-recourse (factual) target Y cannot be ob-
served, standard counterfactual prediction cannot be applied
directly. However, we can regard the distribution as a mix-
ture with two components, one for each possible state of
Y . We can estimate the mixing weights using h∗ and each
component using standard counterfactual prediction. Details,
including pseudocode, are provided in B.1.



Subpopulation-based improvement confidence For the
estimation of the individualized improvement confidence
γind, knowledge of the SCM is required. If the SCM is not
specified, but the causal graph is known instead, and there
are no unobserved confounders (causal sufficiency), we can
still estimate the effect of interventions (rung 2).
In contrast to counterfactual distributions (rung 3), interven-
tional distributions describe the whole population and there-
fore provide limited insight into the effects of actions on
specific individuals. Building on Karimi et al. (2020b), we
thus narrow the population down to a subpopulation of similar
individuals, for which we then estimate the subpopulation-
based causal effect. More specifically, we consider individu-
als to belong to the same subgroup if the variables that are not
affected by the intervention take the same values. For action a,
we define the subgroup characteristics as Ga := nd(Ia) (i.e.,
the non-descendants of the intervened-upon variables in the
causal graph).6 More formally, we define the subpopulation-
based improvement confidence γsub as the probability of
Y taking the favorable outcome in the subgroup of similar
individuals (Definition 2).

Definition 2 (Subpopulation-based improvement confidence).
Let a be an action that potentially affects Y , i.e. Ia ∩
asc(Y ) 6= ∅.7 Then we define the subpopulation-based im-
provement confidence as

γsub(a) = γ(a, xpreGa
) := P (Y post = 1|do(a), xpreGa

).

The set Ga is chosen for practical reasons. To make the
estimation more accurate, we would like to condition on as
many characteristics as possible. However, without access to
the SCM, one can only identify interventional distributions
for subgroups of the population by conditioning on their (un-
observed) post-intervention characteristics (but not by condi-
tioning on their pre-intervention characteristics) (Pearl 2009;
Glymour, Pearl, and Jewell 2016). If we were to select a sub-
group from a post-recourse distribution by conditioning on
pre-recourse characteristics that are affected by a (e.g., strong
pre-recourse symptoms), we yield a group that the individual
may not be part of (e.g., people with strong post-recourse
symptoms). In contrast, for XGa pre- and post-intervention
values coincide, such that we can estimate γsub: Assuming
causal sufficiency, the standard procedure to sample inter-
ventional distributions can be applied, only that additionally
Xpost
Ga

:= xpreGa
. Based on the sample, γsub can be estimated

(as detailed in B.3).
The estimation of γsub does not require knowledge of the
SCM but is less accurate than γind. In the introductory ex-
ample, for the action get vaccinated, the set of subgroup
characteristics Ga is empty. As such, γsub is concerned with
the effect of a vaccination on the whole population. If we
were to observe zip code, a variable that is not affected by
vaccination, γsub would indicate the effect of vaccination for

6The estimand resembles the conditional treatment effect with
Ga being effect modifiers (Hernán MA 2020).

7If a cannot affect Y , we can predict P (Y |xpre, do(a)) =
P (Y |xpre) using the optimal observational predictor h∗.

subjects that share the explainee’s zip code. In contrast, γind
also takes the explainee’s symptom state into account.

Optimization problem To generate ICR recommenda-
tions, we can optimize Equation 1. We aim to find actions
that meet a user-specified improvement target confidence γ
with minimal cost for the recourse seeking individual. The
cost function cost(a, xpre) captures the effort the individual
requires to perform action a (Karimi et al. 2020b).
As for CE or CR, the optimization problem for ICR is com-
putationally challenging (B.4). It can be seen as a two-level
problem, where on the first level the intervention targets Ia,
and on the second level the corresponding intervention val-
ues θa are optimized (Karimi et al. 2020b). Since we target
improvement, we can restrict Ia to causes of Y . Following
Dandl et al. (2020), we use the genetic algorithm NSGA-II
(Deb et al. 2002) for optimization.

argmina=do(XI=θ) cost(a, xpre) s.t. γ(a) ≥ γ. (1)

6 Accurate Post-Recourse Prediction
Recourse recommendations should not only lead to improve-
ment Y but also revert the decision Ŷ . Whether acceptance
guarantees naturally ensue from γ depends on the ability
of the predictor to recognize improvements. As follows, we
demonstrate how the assumed causal knowledge can be ex-
ploited to design accurate post-recourse predictors. We find
that an individualized post-recourse predictor is required to
translate γind into an individualized acceptance guarantee,
but curiously that the observational predictor is sufficient in
supopulation-based settings.

Individualized post-recourse prediction If we were to
use the optimal pre-recourse observational predictor h∗ for
post-recourse prediction, there would be an imbalance in pre-
dictive capability between ML model and individualized ICR:
ICR individualizes its predictions using xpre and the SCM.
This knowledge is not accessible by the predictor h∗, which
only makes use of xpost. As such, improvement that was
accurately predicted by ICR is not necessarily recognized by
h∗, and γind cannot be directly translated into an acceptance
bound. We demonstrate the issue at an Example in E.3.8
To settle the imbalance between ICR and the predictor, we
suggest leveraging the SCM not only when generating in-
dividualized ICR recommendations but also when predict-
ing post-recourse, such that the predictor is at least as accu-
rate as γind. More formally, we suggest estimating the post-
recourse distribution of Y conditional on xpre, do(a), and the
post-recourse observation xpost,a (Definition 3). This post-
recourse prediction resembles the counterfactual distribution,
except that we additionally take the factual post-recourse
observation of the covariates into account.

8One may also argue that standard predictive models are not
suitable since optimality of the predictor in the pre-recourse dis-
tribution does not necessarily imply optimality in interventional
environments (as Example 1, E.1 demonstrates). We can refute this
criticism using Proposition 3, where we learn that ĥ∗ is stable with
respect to ICR actions.



Definition 3 (Individualized post-recourse predictor). We
define the individualized post-recourse predictor as

h∗,ind(xpost) = P (Y post = 1|xpost, xpre, do(a))

For SCMs with invertible equations, h∗,ind can be es-
timated using a closed form solution. Otherwise, we can
sample from the counterfactual post-recourse distribution
p(ypost, xpost|xpre, do(a)) (as we did for the estimation of
γind), select the samples that conform with xpost and com-
pute the proportion of favorable outcomes (details in B.2).
For the individualized post-recourse predictor, improvement
probability and prediction are closely linked (Proposition
1). More specifically, the expected post-recourse prediction
h∗,ind is equal to the individualized improvement probability
γ(xpre, a). We will exploit Proposition 1 in Section 7, where
we derive acceptance guarantees for ICR.
Proposition 1. The expected individualized post-recourse
score is equal to the individualized improvement probability
γind(xpre, a) := P (Y post = 1|xpre, do(a)), i.e.

E[ĥ∗,ind(xpost)|xpre, do(a)] = γind(a).

Subpopulation-based post-recourse prediction Curi-
ously we find that for ICR actions a the optimal observational
pre-recourse predictor h∗ remains accurate: in the subpopu-
lation of similar individuals, the expected post-recourse pre-
diction corresponds to the improvement probability γsub(a)
(Proposition 3). This allows us to derive acceptance guaran-
tees for h∗ in Section 7.
This result is in contrast to the negative results for CR, where
actions may not affect prediction and the underlying target
coherently, such that the predictive performance deteriorates
(as demonstrated in the introduction, and more formally in
E.1). The key difference to CR is that ICR actions exclu-
sively intervene on causes of Y : Interventions on non-causal
variables may lead to a shift in the conditional distribution
P (Y |XS) (where S ⊆ D is any set of variables that allows
for optimal prediction). In contrast, given causal sufficiency,
the conditional P (Y |XS) is stable to interventions on causes
of Y .
Proposition 2. Given nonzero cost for all interventions,
ICR exclusively suggests actions on causes of Y . Assuming
causal sufficiency, for optimal models, the conditional distri-
bution of Y given the variables XS that the model uses (i.e.,
P (Y |XS)) is stable w.r.t interventions on causes. Therefore,
optimal predictors are intervention stable w.r.t. ICR actions.
Proposition 3. Given causal sufficiency and positivity9, for
interventions on causes the expected subgroup-wide optimal
score h∗ is equal to the subgroup-wide improvement proba-
bility γsub(a) := P (Y post = 1|do(a), xpreGa

), i.e.

E[ĥ∗(xpost)|xpreGa
, do(a)] = γsub(a).

9Positivity ensures that the post-recourse observation lies within
the observational support (Neal 2020), where the model was trained
(i.e., ppre(xpost) > 0)).

Link between CR and ICR: Proposition 2 has further inter-
esting consequences. For CR actions a that only intervene
on causes of Y and that are guaranteed to yield a predicted
score ζ in the subpopulation, we can infer that γsub(a) ≥ ζ.
For instance, if acceptance with respect to a 0.5 decision
threshold can be guaranteed, that implies improvement with
at least 50% probability. As such, in subpopulation-based
settings (1) improvement guarantees can be made for CR if
only interventions on causes are lucrative, and (2) CR can
be adapted to also guide towards improvement by restricting
actions to intervene on causes.

7 Acceptance Guarantees
For the presented accurate post-recourse predictors, improve-
ment guarantees translate into acceptance guarantees (Propo-
sition 4). The reason is that the post-recourse prediction is
linked to γ (Propositions 1 and 3).
Proposition 4. Let g be a predictor with
E[g(xpost)|xpreS , do(a)] = γ(xpreS , a). Then for a de-
cision threshold t the post-recourse acceptance probability
η(t;xpreS , a) := P (g(xpost) > t|xpreS , do(a)) is lower
bounded by the respective improvement probability:

η(t;xpreS , a, g) ≥
γ(xpreS , a)− t

1− t
.

Proof (sketch): We decompose the expected prediction (γ)
into true positive rate (TPR), false negative rate (FNR) and
acceptance rate. By bounding TPR and FNR we yield the
presented acceptance bound. The proof is provided in D.4.

Using Proposition 4, we can tune confidence γ and the
model’s decision threshold to yield a desired acceptance rate.
For instance, we can guarantee acceptance with (subgroup-
wide) probability η ≥ 0.9 given γ = 0.95 and a global
decision threshold t = 0.5 .
Furthermore, we can leverage the sampling procedures that
we use to compute γ to estimate the individualized or
subpopulation-based acceptance rate η(t;xpreS , a, g) (as de-
tailed in B.1 and B.3). To guarantee acceptance with certainty,
the decision threshold can be set to t = 0.
For the explainee, it is vital that the acceptance guarantee
is presented in a human-intelligible fashion. In contrast to
previous work in the field, we suggest communicating the
acceptance guarantee in terms of a probability.10 Further-
more, for subpopulation-based recourse, the set of subgroup
characteristics should be transparent. In the hospital admis-
sion example, the subpopulation-based acceptance guarantee
could be communicated as follows: Within a group of in-
dividuals that share your zip code, a vaccination leads to
acceptance with at least probability η.

8 Experiments
In the experiments we evaluate the following questions,
assuming correct causal knowledge and accurate models of
the conditional distributions in the data:

10For CR, the acceptance confidence is encoded in a hyperparam-
eter, as explained in E.2.



Q1: Do CE, CR, and ICR lead to improvement?
Q2: Do CE, CR, and ICR lead to acceptance (by pre- and
post-recourse predictor)?
Q3: Do CE, CR, and ICR lead to acceptance by other
predictors with comparable test error?11

Q4: How costly are CE, CR and ICR recommendations?

Setup We evaluate CE, individualized and subpopulation-
based CR, and ICR with various confidence levels, over
multiple runs, and on multiple synthetic and semi-synthetic
datasets with known ground truth (listed below).12 Random
forests were used for prediction, except in the 3var settings
where logistic regression models were used. Following
Dandl et al. (2020), we use NSGA-II (Deb et al. 2002) for
optimization. For a full specification of the SCMs including
the linear cost functions, we refer to C.2. Details on the
implementation and access to the code are provided in C.1.

3var-causal: A linear gaussian SCM with binary tar-
get Y , where all features are causes of Y .
3var-noncausal: The same setup as 3var-causal, except that
one of the features is an effect of Y .
5var-skill: A categorical semi-synthetic SCM where pro-
gramming skill level is predicted from causes (e.g. university
degree) and non-causal indicators extracted from GitHub
(e.g. commit count).
7var-covid: A semi-synthetic dataset inspired by a real-world
covid screening model (Jehi et al. 2020; Wynants et al.
2020).13 The model includes typical causes like covid
vaccination or population density and symptoms like
fever and fatigue. The variables are mixed categorical
and continuous with various noise distributions. Their
relationships include nonlinear structural equations.

Results The results are visualized in Figures 3-5 and pro-
vided in tabular form in C.3. For each setting CE, CR,
and ICR explanations were computed over 10 runs on
200 individuals each. For CR and ICR the confidences
0.75, 0.85, 0.9, 0.95 were targeted (for CR: η, for ICR: γ).
For CE no slack is allowed, such that the results correspond
to a confidence level of 1.0. Values are plotted on quadratic
scales.

Q1 (Figure 3): In scenarios where gaming is possible and
lucrative (3var-noncausal, 5var-skill and 7var-covid) ICR
reliably guides towards improvement, but CE and CR game
the predictor and yield improvement rates close to zero. For
instance, on 5var-skill CE and CR exclusively suggest tun-
ing the GitHub profile (e.g. by adding more commits). Since
the employer offered recourse it should be honored although
the applicants remain unqualified. In contrast, ICR suggests
getting a degree or gaining experience, such that recourse

11The problem that refits on the same data with similar perfor-
mance have different mechanism is known as the Rashomon prob-
lem or model multiplicity (Breiman 2001; Pawelczyk, Broelemann,
and Kasneci 2020; Marx, Calmon, and Ustun 2020).

12For ground-truth counterfactuals, simulations are necessary
(Holland 1986).

13The real-world screening model is used to decide whether indi-
viduals need a test certificate to enter a hospital. It can be accessed
via https://riskcalc.org/COVID19/.

Figure 2: Left: Causal graphs. Right: Legend for color (SCM)
and linestyle (recourse type) in Figures 3, 4 and 5.
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Figure 3: Observed improvement rates γobs (Q1).

implementing individuals are suited for the job.
On 3var-causal, where gaming is not possible, CR also
achieves improvement. However, since acceptance w.r.t to
a decision threshold t = 0.5 is targeted, only improvement
rates close to 50% are achieved (the expected predicted score
translates into γsub (Proposition 3)).
For subp. ICR, γobs is below γ, because the subpopula-
tion may include individuals that were already accepted pre-
recourse, such that γsub and γobs may not coincide.

Q2 (Figure 4): All methods yield the desired acceptance
rates w.r.t. to the pre-recourse predictor.14 For CE and CR
ηobs is higher than for ICR, and for ind. recourse higher
than for subp. recourse. Curiously, although no acceptance
guarantees could be derived for the pre-recourse predictor
and ind. ICR, we find that both pre- and ind. post-recourse
predictor reliably lead to acceptance.15

Q3 (Figure 5): We observe that CE and CR actions are
unlikely to be honored by other model fits with similar per-
formance on the same data. This result is highly relevant to
practitioners since models deployed in real-world scenarios
are regularly refitted. As such, individuals that implemented
acceptance-focused recourse may not be accepted after all,
since the decision model was refitted in the meantime. In
contrast, ICR acceptance rates are nearly unaffected by refits.
The result confirms our argument that improvement-focused
recourse may be more desirable for explainees (Section 4).

Q4 (Table 1): CR actions are cheaper than ICR actions,
since improvement may require more effort than gaming. As

14ICR holds the acceptance rates from Proposition 4, as analyzed
in more detail in C.3.

15Given that the ind. post-recourse predictor is much more dif-
ficult to estimate, the pre-recourse predictor in combination with
individualized acceptance guarantees (B.1) may cautiously be used
as fallback.
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Figure 5: Observed acceptance rates for other fits with com-
parable test set performance ηobs,refit (Q3).

such, CR has benefits for the explainee: For instance, on 5var-
skill, CR suggests tuning the GitHub profile (e.g. by adding
more commits), which requires less effort than earning a
degree or gaining job experience. Detailed results on cost are
reported in C.3.

In conclusion, ICR actions require more effort than CR,
but lead to improvement and acceptance while being more
robust to refits of the model.

9 Limitations and Discussion
Causal knowledge and assumptions Individualized ICR
requires a fully specified SCM; Subpopulation-based ICR is
less demanding but still requires the causal graph and causal
sufficiency. SCMs and causal graphs are rarely readily avail-
able in practice (Peters, Janzing, and Schölkopf 2017) and
causal sufficiency is difficult to test (Janzing et al. 2012). Re-
search on causal inference gives reason for cautious optimism
that the difficulties in constructing SCMs and causal graphs
can eventually be overcome (Spirtes and Zhang 2016; Pe-
ters, Janzing, and Schölkopf 2017; Heinze-Deml, Maathuis,
and Meinshausen 2018; Malinsky and Danks 2018; Glymour,

Table 1: Recourse cost (Q4).

CE ind. CR sub. CR ind. ICR sub. ICR

1.8 ± 1.1 1.3 ± 1.1 1.7 ± 1.0 4.3 ± 3.3 4.2 ± 3.3

Zhang, and Spirtes 2019).
There are further foundational problems linked to causal-
ity that affect our approach: causal cycles, an ontologically
vague target Y (e.g. in hiring), disparities in our data, or
causal model misspecification (Barocas and Selbst 2016;
Barocas, Hardt, and Narayanan 2017; Bongers et al. 2021).
All of these factors are considered difficult open problems
and may have detrimental impact on our, as well as on any
other, recourse framework.
Guiding action without causal knowledge is impossible;
when causal knowledge is available, our work provides a
normative framework for improvement-focused recourse rec-
ommendations. Thus, we join a range of work in explain-
ability (Frye, Rowat, and Feige 2020; Heskes et al. 2020;
Wang, Wiens, and Lundberg 2021; Zhao and Hastie 2021)
and fairness (Kilbertus et al. 2017; Kusner et al. 2017; Zhang
and Bareinboim 2018; Makhlouf, Zhioua, and Palamidessi
2020) that highlights the importance of causal knowledge.

Contestability Improvement-focused recourse guides indi-
viduals towards actions that help them to improve, e.g., it rec-
ommends a vaccination to lower the risk of getting infected
with Covid. If, however, an explainee is more interested in
contesting the algorithmic decision, (improvement-focused)
recourse recommendations are not sufficient. Think of an
individual who is denied entrance to an event because of their
high Covid risk prediction, which is based on a non-causal,
spurious association with their country of origin16. In such
situations, we suggest to additionally show explainees di-
verse explanations, which enable to contest the decision. For
example, such an explanation could be: if your country of
origin was different, your predicted Covid risk would have
been lower.

10 Conclusion
In the present paper, we took a causal perspective and in-
vestigated the effect of recourse recommendations on the
underlying target variable. We demonstrated that acceptance-
focused recourse recommendations like CE or CR might not
improve the underlying target but game the predictor instead.
The problem stems from predictive but non-causal relation-
ships, which are abundant in ML applications.17

We introduced Improvement-Focused Causal Recourse (ICR),
an explanation technique that exploits causal knowledge to
guide toward improvement. To guarantee acceptance, we en-
sured that improvements are recognized by the post-recourse
predictor: For cases where we individualize the recommen-
dation using knowledge of the SCM, we proposed an indi-
vidualized post-recourse predictor; In the remaining cases,
post-recourse acceptance guarantees hold for any predictor
that is accurate pre-recourse. In experiments we support the
theoretical advantages of ICR.
With our proposal, we hope to inspire a shift from acceptance-
to improvement-focused recourse.

16E.g., due to a spurious association with the type of vaccine.
17E.g. in hiring, some keywords in the CV are predictive, but

adding them to the CV does not improve aptitude (Strong 2022).
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A Extended Background
As follows, we recapitulate well-known definitions in our
notation, provide more detailed background on related work
and recapitulate results that we use in the proofs. Readers
who are already familiar with recourse terminology and d-
separation (A.1 and A.2), and who are not interested in more
detailed introductions of intervention stability (A.3, only
required for the proof of Proposition 2) or causal recourse
(A.4), may skip this section.

A.1 Overview of important terms
An overview of important terms is provided in Table 2.

A.2 d-separation
Two variable setsX,Y are called d-separated (Geiger, Verma,
and Pearl 1990; Spirtes et al. 2000) by the variable set Z in
a graph G (denoted as X ⊥G Y |Z), if, and only if, for every
path p it either holds that (i) p contains a chain i→ m→ j
or a fork i ← m → j where m ∈ Z or (ii) p contains a
collider i → m ← j such that m and for all of its descen-
dants n it holds that m,n 6∈ Z. Given the causal Markov
property, d-separation in a causal graph implies (conditional)
independence in the data (Peters, Janzing, and Schölkopf
2017).

A.3 Generalizability and intervention stability
For Proposition 2, we leverage necessary conditions for in-
variant conditional distributions as derived in (Pfister et al.
2021). The authors introduce a d-separation based interven-
tion stability criterion that is applied to a modified version
of G. For every intervened upon variable Xl an auxiliary in-
tervention variable, denoted as Il, is added as direct cause of
Xl, yielding G∗. The intervention variable can be seen as a
switch between different mechanisms. A set S ⊆ {1, . . . , d}
is called intervention stable regarding a set of actions if for
all intervened upon variables Xl (where l ∈ I total) the d-
separation I l ⊥G∗ Y |XS holds in G∗. The authors show that
intervention stability implies an invariant conditional distribu-
tion, i.e., for all actions a, b ∈ A with Ia, Ib ⊆ I total it holds
that p(ya|xS) = p(yb|xS) (Pfister et al. (2021), Appendix
A).

A.4 Causal recourse
ICR is closely related to the CR framework (Karimi et al.
2020b; Karimi, Schölkopf, and Valera 2021), but differs sub-
stantially in its motivation and target. In order to allow for a
direct comparison we briefly sketch the main ideas and the
central CR definitions in our notation. Like ICR, CR aims to
guide individuals to revert unfavorable algorithmic decisions
(recourse). Therefore, they suggest to search for cost-efficient
actions that lead to acceptance by the prediction model. Ac-
tions are modeled as structural interventions a : Π → Π,
which can be constructed as a = do({Xi := θi}i∈I), where
I is the index set of features to be intervened upon (Karimi,
Schölkopf, and Valera 2021). The conservativeness of the
suggested actions can be adjusted using the hyperparameter
γLCB , that determines the adaptive threshold thresh(a)

and thereby how many standard deviations the expected pre-
diction shall be away from the model’s decision threshold t.
In order to accommodate different levels of causal knowledge,
two probabilistic versions of CR were introduced (Karimi
et al. 2020b): While individualized recourse assumes knowl-
edge of the SCM, subpopulation-based CR only assumes
knowledge of the causal graph.

Individualized recourse Individualized recourse predicts
the effect of actions using structural counterfactuals (Karimi,
Schölkopf, and Valera 2021), which require a full specifica-
tion of the SCM.

Given a function that evaluates the cost of actions
(cost(a, xpre)), the optimization goal for individualized
causal recourse is given below. The adaptive threshold
thresh bounds the prediction away from the decision
threshold.18

a∗ ∈ argmin
a∈A

cost(a, xpre)

s.t. E[ĥ(xpost)|do(a), xpre] ≥ thresh(a)

with thresh(a) := 0.5 + γLCB

√
Var[ĥ(xpost,a)]

Subpopulation-based recourse: If no knowledge of the
SCM is given, counterfactual distributions cannot be esti-
mated and consequently individualized recourse recommen-
dations cannot be computed. Subpopulation-based CR is
based on the average treatment effect within a subgroup of
similar individuals (Karimi et al. 2020b). More specifically
individuals belong to the same group if the non-descendants
nd(I) of intervention variables (which ceteris paribus remain
constant despite the intervention) take the same value. The
subpopulation-based objective is given below.

a∗ ∈ argmin
a∈A

cost(a, xpre) s.t.

EXd(I)|do(XI=θ),xpre
nd(I)

[ĥ(xprend(I), θ,Xd(I))]

≥ thresh(a).

A.5 Robust algorithmic recourse
The robustness of CEs and CR has been investigated be-
fore (Rawal, Kamar, and Lakkaraju (2021); Upadhyay,
Joshi, and Lakkaraju (2021); Dominguez-Olmedo, Karimi,
and Schölkopf (2021); Pawelczyk et al. (2022);Pawelczyk,
Broelemann, and Kasneci (2020)), yet only with respect to
generic shifts of model and data. Only (Pawelczyk, Broele-
mann, and Kasneci 2020) investigate the robustness regarding
refits on the same data. They find that on-the-manifold CEs
are more robust than standard CEs. In contrast, we empiri-
cally compare the robustness of CE, CR and ICR with respect
to refits on the same data.

18Further constraints have been suggested, e.g., xpost,a ∈
Plausible or a ∈ Feasible (Laugel et al. (2019); Mahajan, Tan,
and Sharma (2020);Ustun, Spangher, and Liu (2019); Dandl et al.
(2020); Karimi, Schölkopf, and Valera (2021)).



Table 2: Overview of important terms and their meanings.

term meaning

explainee individual for whom the explanation is generated, e.g. loan applicant
model authority decision-making entity, e.g. credit institute
recourse action of the explainee that reverts unfavorable decision
acceptance desirable model prediction (Ŷ = 1)
improvement (yield) desirable state of the underlying target (Y = 1)
gaming yield acceptance without improvement, e.g. treating the symptoms
pre-/post-recourse before/after implementing recourse recommendation
contestability the explainee’s ability to contest an algorithmic decision
robustness of recourse probability that recourse is accepted despite model/data shifts

B Estimation and Optimization
As follows we provide detailed explanations of the proposed
estimation procedures. First, we explain how to sample from
the individualized post-recourse distribution, which allows us
to estimate the individualized improvement and acceptance
rates (γind and ηind, B.1). Based on the same sampling mech-
anism we can also estimate the individualized post-recourse
prediction h∗,ind (B.2). Then we explain how to sample from
the subpopulation-based post-recourse distribution, which
allows us to estimate the subpopulation-based improvement
and acceptance rates (γsub and ηsub, B.3). Furthermore, we
provide details on optimization (B.4) and demonstrate that
the optimal observational predictor h∗ can also be estimated
using the SCM (B.5).

B.1 Estimation of the individualized
improvement confidence γind and
individualized acceptance rate ηind

We recall that γind is the counterfactual probability of the
underlying target Y taking the favorable outcome, and ηind

the counterfactual probability of the prediction Ŷ taking the
favorable outcome. In order to estimate γind and ηind we
first sample covariates and target from the counterfactual
post-recourse distribution and then compute the proportion
of favorable outcomes for Y and Ŷ in the sample.
In general, sampling from counterfactual distributions based
on a SCM is performed in three steps (Section 3, (Pearl
2009)).

1. Abduction: The exogenous noise variables are recon-
structed from the observations, i.e., p(uY,D|xpre) is esti-
mated.

2. Intervention: The intervention do(a) on the SCMM is
performed by replacing the respective structural equations
fIa := θIa , yieldingMdo(a).

3. Prediction: The abducted noise variables are sam-
pled from p(uY,D|xpre) and passed through the model
Mdo(a) to sample from the counterfactual distribution
P (Y post, Xpost|xpre, do(a)).

Given knowledge of the SCM, the challenge is to sample
the exogeneous variables from p(uY,D|xpre) (abduction). As
follows we explain the abduction in two steps. First, we
explain how we can abduct uj for variables for which both

the node xj and all parents (x, y)pa(j) are observed, which we
refer to as the standard abduction case. Then we factorize the
abduction of the joint p(uY,D|xpre) into several components
which can be reduced to said standard abduction case. The
sampling procedure is summarized in Algorithm 1.

Recap: Standard abduction If for a node uj both the
node (x, y)j and the parents (x, y)pa(j) are observed, we can
apply standard abduction. The standard abduction procedure
depends on the type of structural equation and exogenous
noise distribution.
Given invertible structural equations, observation of
xj , xpa(j) determines uj . More specifically, uj can be re-
constructed using

uj = f−1(xj ;xpa(j)).

For instance, for additive structural equations
fj(uj ;xpa(j)) = g(xpa(j)) + uj , the inversion is given by
f−1
j (xj ;xpa(j)) = xj − g(xpa(j)).

In our experiments we also included binomial variables
with a sigmoidal (non-invertible) structural equation.
More specifically, the structural equations are defined as
xj = [σ(l(xpa(j))) ≤ uj ] with Uj ∼ Unif(0, 1). Here
σ refers to the sigmoid function and l to some linear
combination. [cond] evaluates to 1 when the condition is
true and otherwise to 0. Intuitively, σ(l(xpa(j))) can be seen
as a nonlinear activation function which determines the
probability of the node being activated (xj = 1). uj acts as
a dice, where values ≤ σ(l(xpa(j))) imply xj = 1 and vice
versa.
For those variables, if xj = 1, we know that
uj ≤ σ(l(xpa(j))) and vice versa, such that we can
abduct Uj as follows (and can therefore sample uj):

P (Uj |xj ;xpa(j)) =

{
Unif(0, σ(l(xpa(j)))), for xj = 1
Unif(σ(l(xpa(j))), 1), for xj = 0

As we will see in the next section, our estimation procedure
can be flexibly extended to SCMs with different types of
structural equations, as long as a procedure to sample from
the abducted exogneous noise variable for the standard case
(where parents and the node itself are observed) is available.

Factorization of p(u|x) We have demonstrated how to
abduct individual nodes in the standard setting where the



Algorithm 1: Sampling from the individualized post-
recourse distribution

Data: pre-recourse observation xpre, action a (where
do(a) := do(XIa := θ)), sample size M ,
structural causal modelM with structural
equations fj , observational predictor h

Result: sample from p(ypost, xpost|xpre, do(a))
getMdo(a) by updating fi(xpa(i);ui) := θi for
i ∈ Ia ;

for m in (0, ...,M − 1) do
sample y′ from Binomial(h(xpre)) ;
for j in D do

sample u(m)
j from p(uj |(x, y′)j , (x, y′)pa(j));

. comment: leveraging standard abduction;
end
sample u(m)

Y from p(uY |y′, xpa(Y )) ;
compute (xpost, ypost)(m) = fMdo(a)

(u(m)) ;
end

corresponding endogenous variable and its parents are ob-
served.
As follows we demonstrate how to sample from the joint
distribution of the exogenous variables given an observation
of X (and without observing Y ). Therefore, we show that
p(u|x) can be seen as a mixture of two distributions, one for
each possible state y′ of Y . In order to sample from it, we (1)
need to sample y′ from the mixing distribution p(y|x) and (2)
given y′, sample from the respective abducted noise variable
p(u|y′, x).

p(u|x) (2)

law tot. prob.
=

∑
y′∈{0,1}

p(u, y′|x) (3)

cond. prob.
=

∑
y′∈{0,1}

p(u|y′, x)p(y′|x) (4)

The binomial mixing distribution p(y|x) can be obtained and
sampled from by leveraging the cross-entropy optimal pre-
dictor h∗ (which can for instance be derived from the SCM,
see B.5). In order to sample from p(u|y′, x) we leverage the
Markov factorization, which allows us to sample each com-
ponent independently using the standard abduction procedure
described above.

p(u|x, y′)
d-sep.

= P (uY |xpa(Y ), y
′)∏

k∈ch(Y )

P (uk|xk, xpa(k), y
′)

∏
k 6∈ch(Y )

P (uk|xk, xpa(k)).

(5)

The overall procedure is summarized in Algorithm 1.

Estimation of γind and ηind Given the procedure to sam-
ple from the individualized post-recourse distribution we can

Algorithm 2: Estimating h∗,ind

Data: pre-recourse observation xpre, action a, sample
size M , structural causal modelM,
observational predictor h, m = 0

Result: ĥind(xpost;xpre, do(a))
while m < M do

sample (x′, y′) using Alg. 1 and xpre, a,M, h;
if x′ = xpost then

m = m+ 1; store y′ as y′(m) ;
end

end
ĥind(xpost) = 1

M

∑M
m=1 y

′(m)

estimate γind by taking the mean over the samples taken
for Y post. Similarly, for each sample for Xpost we can com-
pute the prediction ŷpost using either h ≥ t or hind ≥ t. By
taking the mean over all sampled predictions ŷpost we can
estimate the respective acceptance probability η(t;xpre, a, h)
or η(t;xpre, a, hind).

B.2 Estimation of the individualized
post-recourse prediction

We continue to show how the individualized post-recourse
prediction can be estimated. We recall that h∗,ind is

h∗,ind(xpost;xpre, a) = P (Y post = 1|xpost, xpre, do(a)).

We can estimate h∗,ind by leveraging the procedure to
sample from the post-recourse covariate distribution
(Algorithm 1). More specifically, we draw samples (y′, x′)
from P (Y post, Xpost|do(a), xpre) and keep those that
conform with xpost (i.e., x′ = xpost). Within the subsample,
we compute the proportion of samples for which y′ = 1 to
estimate p(ypost|xpre, xpost, do(a)). In more formal terms,
we approximate Eq. 6 using rejection sampling and Monte
Carlo integration (Koller and Friedman 2009).
If the structural equations are invertible19 or the nodes are
categorical the procedure is tractable, since many or all
samples conform with xpost. Otherwise the estimation may
become intractable. We see the application of likelihood
weighting or MCMC as promising directions and refer
interested readers to Koller and Friedman (2009).
In addition to the sampling-based procedure we also derive a
closed-form solution for settings with invertible structural
equations, which is provided in Proposition 5, Eq. 7.

Proposition 5. In general, the individualized post-recourse
predictor can be estimated as

p(ypost|xpre, xpost, do(a))

=

∫
U p(y

post, xpost|u, do(a))p(u|xpre)du∑
y′∈{0,1}

(∫
U p(y

′, xpost|u, do(a))p(u|xpre)du
) (6)

19Meaning that the abducted joint distribution has point mass
probability for two configurations, one for each possible state of Y .
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Figure 6: Left: Causal graph GIa visualizing the
subpopulation-based post-recourse setting, including the pre-
diction target Y (light blue), intervened-upon variables Ia
(red), the subgroup characteristics Ga (cyan) and the descen-
dants Γ that shall be resampled (dark blue). Ia indicates that
incoming edges to Ia were removed. Right: Causal graph
GIaGa

where incoming edges to Ia and outgoing edges from
Ga were removed. We observe that in this manipulated graph
Ga is d-separated from Γ. Thus, according to the second
rule of do-calculus, for Ga intervention and conditioning
coincide.

Given invertible structural equations, the individualized post-
recourse prediction function reduces to

p(ypost|xpost, xpre, do(a))

=
p(U−I = f−1

do(a)(y
post, xpost)|xpre, do(a))∑

y′∈{0,1} p(U−I = f−1
do(a)(y

′, xpost)|xpre, do(a))
.

(7)

B.3 Estimation of the subpopulation-based
improvement confidence γsub and the
subpopulation-based acceptance rate ηsub

As follows we detail how to estimate γsub and ηsub. We fo-
cus on actions a that potentially affect Y , meaning that they
intervene on causes of Y .20

In order to estimate γsub and ηsub we sample (x′, y′) from
the subpopulation-based post-recourse distribution. Given a
sample from the subpopulation-based post-recourse distribu-
tion we can estimate γsub and ηsub by taking the respective
sample means.
We explain the sampling procedure in two steps: We first
recall how causal graphs can be leveraged to sample inter-
ventional distributions, and then explain why we can apply
the procedure to sample from the subpopulation-based post-
recourse distribution.

Recap: Sampling interventional distributions leveraging
a causally sufficient causal graph G Given a causal graph
G (that fulfills the global Markov property), the joint dis-
tribution P (X,Y ) can be reformulated using the Markov
factorization, which makes use of the d-separations in the

20Actions that do not affect Y trivially do not lead to improve-
ment. The respective probability of Y = 1 can be estimated using
the optimal observational predictor.

Algorithm 3: Sampling from the subpopulation-
based post-recourse distribution

Data: pre-recourse observation xpre, action a with
Ia ∩ asc(Y ) 6= ∅ (do(a) := do(XIa := θ)),
sample size M , causal graph G, conditional
distributions P (Xj |Xpa(j)) for j ∈ Γ with
Γ := {r : r ∈ asc(Y ) ∧ r ∈ d(I)}

Result: sample from p(y, xΓ|do(a), xGa)
for m← 0 to M do

Γsorted ← topologicalsort( Γ;Gdo(a)) . sort such
that causes precede effects ;

for j in Γsorted do
sample (x, y)

post,(m)
j

∼ P ((X,Y )j |(X,Y )pa(j) = (x, y)postpa(j)) ;
end

end

graph.

p(x, y) = p(y|xpa(y))
∏
j∈D

p(xj |(x, y)pa(j))

As a consequence, we can sample from the joint distribution
by sampling each component given its respective parents.
In order to ensure that the parents for each node have been
sampled already, the graph is traversed in topological order,
starting with the root node and ending with the sink nodes
(Koller and Friedman 2009).
Given that causal sufficiency (no unobserved confounders)
and the principle of independent mechanisms hold, the same
procedure can also be applied when sampling from interven-
tional distributions of the form p(x, y|do(a)) by leveraging
the so-called truncated factorization. The intervened upon
nodes are not sampled from their parents, but fixed to the
values θa. The remaining nodes Γ are sampled as before:

p((x, y)Γ|do(a)) =
∏
j∈Γ

p((x, y)j |(x, y)pa(j)∩Γ, θpa(j)∩Ia)

with Γ := D\Ia

Sampling from the subpopulation-based post-recourse
distribution using G We recall that for actions a that po-
tentially affect Y the subpopulation-based post-recourse dis-
tribution is defined as

P (Y post, Xpost|do(a), Xpost
Ga

= xpreGa
). (8)

As we will see, the previously described sampling procedure
can be applied. Therefore we apply the second rule of do-
calculus to show that in Equation 8 conditioning on xGa

is
equal to intervening do(XGa = xGa). More specifically, if
we remove all outgoing edges from XGa and all incoming
edges to Ia, thenXGa andXΓ with Γ := D\Ia∩Ga = d(Ia)
are d-separated, meaning that conditioning and intervention
are equivalent (Figure 6).

P ((Y,X)postΓ |do(a), Xpost
Ga

= xpreGa
)

= P ((Y,X)postΓ |do(a), do(Xpost
Ga

= xpreGa
))



As follows we can leverage the procedure to sample interven-
tional distributions to sample from the subpopulation-based
post-recourse distribution. The procedure is illustrated in
Algorithm 3.

Learning the conditional distributions P (Xj |xpa(j)) In
this work we assume that we have prior knowledge that
allows us to sample from the components of the factorization
(P (Xj |xpa(j)), e.g. available if we know the SCM).
If the conditional distributions are not known, they can
be learned from observational data; depending on which
assumptions about distribution and functional can be made,
different techniques may be employed. For categorical
variables the problem reduces to standard supervised
learning with cross-entropy loss. For linear Gaussian data,
the conditional distribution can be estimated analytically
from the covariance matrix (Page Jr 1984). A variety of
estimation techniques exist for continuous settings with
nonlinearities (Bishop 1994; Bashtannyk and Hyndman
2001; Sohn, Lee, and Yan 2015; Trippe and Turner 2018;
Winkler et al. 2019; Hothorn and Zeileis 2021).

B.4 Optimization

Like the optimization problems for CE (Wachter, Mittelstadt,
and Russell 2017; Tsirtsis and Gomez Rodriguez 2020) or
CR (Karimi et al. 2020b), the optimization problem for ICR
is computationally challenging. It can be seen as a two-stage
problem, where in the first stage the intervention targets Ia,
and in the second stage the corresponding intervention values
θa are optimized (Karimi et al. 2020b). For the selection of
intervention targets Ia alone 2d

′
combinations exist, with

d′ ≤ d being the number of causes of Y . We jointly optimize
the intervention targets and the intervention values using a
genetic algorithm called NSGA-II (Deb et al. 2002). For
mixed categorical and continuous data, previous work in
the field (Dandl et al. 2020) suggests to use NSGA-II in
combination with mixed integer evaluation strategies (Li
et al. 2013). The exact hyperparameter configurations are
reported in C.3.

B.5 Estimation of the optimal observational
predictor h∗ using the SCM

Instead of leveraging supervised learning with cross-entropy
loss, we can factorize the optimal observational predictor as
shown in Proposition 6 and then leverage the SCM for the
estimation.

Proposition 6. The optimal observational predictor can be
factorized into conditional distributions of nodes given their
parents (using the Markov factorization). More specifically,

we yield

p(y|x) =
p(x, y)

p(x)
=

p(x, y)∑
y′∈{0,1} p(x, y)

(9)

M.f.
=

p(y|xpa(j))
∏
j∈D p(xj |(x, y)pa(j))∑

y′∈{0,1} p(y
′|xpa(j))

∏
j∈D p(xj |(x, y′)pa(j))

(10)

=
p(y|xpa(j))

∏
j∈ch(y) p(xj |xpa(j), y)∑

y′∈{0,1} p(y
′|xpa(j))

∏
j∈ch(y) p(xj |xpa(j), y′)

.

(11)

It remains to show how the conditional distribution
p(xj |xpa(j)) of a node given its parents can be estimated.
Generally it holds that

p(xj |xpa(j)) (12)

law tot. prob.
=

∫
Uj
p(xj |xpa(j), uj)p(uj |xpa(j))du (13)

SCM, uj ⊥ xpa(j)
=

∫
Uj

[f(xpa(j), uj) = xj ]p(uj)du. (14)

The integral can be approximated using Monte Carlo inte-
gration: we can sample from p(uj), compute the respective
x̃j = fj(xpa(j), ũj) and compute the proportion of cases
where xj = x̃j . If Xj and Uj are continuous, this may re-
quire huge sample sizes to converge.
Furthermore, we may be able to leverage assumptions about
fj to derive a closed form solution. If fj is invertible, the
integral reduces to p(xj |xpa(j)) = p(Uj = f−1

j (xj , xpa(j))).
For binary nodes with xj := [σ(l(xpa(j))) ≤ uj ] and
Uj ∼ Unif(0, 1), we directly see that p(xj |xpa(j)) =
σ(l(xpa(j))).

C Details on Experiments
In this section we provide additional details on the exper-
iments. More specifically, we explain which open-source
libraries we use, how to access our code and how to repro-
duce the results in C.1. We formally introduce the synthetic
and semi-synthetic datasets that we used in our experiments
in C.2 and the corresponding figures. Details on hyperparam-
eters, models as well as detailed results are reported in C.3
and the corresponding tables.

C.1 Implementation
The code relies of efficient tensor calculations with numpy
(Harris et al. 2020), pytorch (Paszke et al. 2019) and
jax (Bradbury et al. 2018). For named dataframes we use
pandas (pandas development team 2020). For plotting
we rely on matplotlib (Hunter 2007) and seaborn
(Waskom 2021). We use the evolutionary optimization li-
brary deap (Fortin et al. 2012) and NSGA-II (Deb et al. 2002)
to solve the combinatorial optimization problem.21 In order

21We also implemented abduction based on probabilistic infer-
ence. Thereby we rely on on pyro (Bingham et al. 2018) for dis-



to speed up the computation, we cache queries and results
for the improvement confidence using functools.cache.
For continuous variables the intervention can be rounded to
a specified number of digits to increase the probability of
reusing a cached result (with neglectable loss of precision).22

All code is publicly available via https://anonymous.4open.
science/r/icr-aaai/README.md. The repository contains the
user-friendly python package icr, which we use in our ex-
periments to generate and evaluate recourse. Furthermore,
the scripts for the experiments, the scripts for the visualiza-
tion of the results as well as a README.md with instructions
for the installation of all dependencies are contained in the
repository, such that the experiments are reproducible.

C.2 Synthetic and Semi-Synthetic Datasets
3var-causal and 3var-noncausal are abstract, synthetic set-
tings. 5var-skill is inspired by Montandon, Valente, and Silva
(2021), who use GitHub profiles to detect the role of a de-
veloper. In our SCM we model senior-level skill as a binary
variable which is caused by programming experience and
the education degree. The skill is causal for GitHub metrics
such as the number of commits, the number of programming
languages and the number of stars. The 7var-covid dataset
is inspired by Jehi et al. (2020). The following variables are
introduced: population density D, flu vaccination VI , num-
ber of covid vaccination shots VC , deviation from average
BMIB, whether someone is free of covid disease C, whether
the individual has influence I , appetite loss SA, fever SFe
and fatigue SFa. The corresponding structural equations,
noise distributions and causal graphs are provided in Fig-
ure 7 (3var-causal), 8 (3var-noncausal), 9 (5var-skill) and
10 (7var-covid). A pairplot for each dataset is presented in
Figure 11. In our notation σ is the sigmoid function, N the
Gaussian distribution, Cat a categorical distribution, Unif
the uniform distribution, Bern a Bernoulli distribution and
GaP a Gamma-Poisson mixture. [cond] is 1 when the con-
dition is met and 0 if not. As a consequence variables with
[Z ≤ U ] and U ∼ Unif(0, 1) are bernoulli distributed with
Bern(Z).

C.3 Detailed Results
In this section we report all experimental results in tabular
form. More specifically, the results for 3var-causal are re-
ported in Table 3, for 3var-noncausal in Table 4, for 5var-skill
in Table 5 and for 7var-covid in Table 6. For each experiment
we report the specified confidence γ (or η for CR), as well as
the observed improvement rate γobs, the observed acceptance
rate ηobs, the observed acceptance rate by the individualized
post-recourse predictor ηindiv.

obs , the observed acceptance rate
on refits ηrefit

obs and the average recourse cost for individuals
who were rejected and whom were provided with a recourse
recommendation. A visual summary of the results is provided
in Section 8.

crete inference and numpyro (Phan, Pradhan, and Jankowiak 2019)
for MCMC inference of continuous variables. For our experiments
we used the analytical formulas presented in B

22All packages are open source. For detailed license information
we refer to the respective package websites.

In order to enable a more direct comparison of the CR
and ICR targets, we equalize the optimization thresholds for
ICR and CR. More specifically, for CR we require the (indi-
vidualized or subpopulation-based) acceptance probability
to be ≥ η, and for ICR we require the (individualized or
subpopulation-based) improvement probability to be ≥ γ,
where γ = η.23 Furthermore, in order to be able to estimate
the effects of recourse actions, CR assumes causal sufficiency,
meaning that there are no two endogeneous variables that
share an unobserved cause. If the target variable Y is exo-
geneous then any causal model with more than one endoge-
neous direct effect of Y violates the assumptions. In order to
enable an application of CR on datasets with more than one
effect variable we assume knowledge of the SCM including
Y for CR as well and draw ground-truth interventional sam-
ples from the SCM instead of identifying the interventional
distribution from observational data.

For 3var-causal and 3var-noncausal we configured NSGA-
II to optimize over 600 generations with a population
size of 300, for 5var-skill and 7var-covid 1000 genera-
tions with 500 individuals were used. For all experiments
the crossover probability was 0.3 and the mutation prob-
ability 0.05. For all settings continuous variables were
rounded to 1 decimal point. For the 3 variable settings
a standard sklearn LogisticRegression was used,
for the refits without penality. For the nonlinear dataset a
RandomForestClassifier with max depth 30, 50 es-
timators and balanced subsampling was applied. The exper-
imental results were computed on a Quad core Intel Core
i7-7700 Kaby Lake processor. For each setting, the experi-
ments took between 24 to 48 hours.

D Proofs
As follows we provide the full proofs for Propositions 1 - 5.

D.1 Linking individualized prediction with γind,
Proof of Proposition 1

Proposition 1. The expected individualized post-recourse
score is equal to the individualized improvement probability
γind(xpre, a) := P (Y post = 1|xpre, do(a)), i.e.

E[ĥ∗,ind(xpost)|xpre, do(a)] = γind(a).

Proof: It holds that

E[h∗,ind(xpost)|xpre, do(a)]

= E[E[Y |xpre, xpost]|xpre, do(a)]

total exp.
= E[Y |xpre, do(a)]

= γind(a).

D.2 Intervention stability w.r.t. ICR actions,
Proposition 2

Proposition 2. Given nonzero cost for all interventions, ICR
exclusively suggests actions on causes of Y . Assuming causal

23A short comment on the choice of a non-adaptive threshold can
be found in E.2.
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X3
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(a) Causal graph

X1 := U1, U1 ∼ N(0, 1)

X2 := X1 + U2, U2 ∼ N(0, 1)

X3 := X1 +X2 + U3, U3 ∼ N(0, 1)

Y ∼ [σ(X1 +X2 +X3) ≤ UY ] , UY ∼ Unif(0, 1)

(b) Structural Equations

Figure 7: SCM for 3var-causal. The cost function is given as cost(a) = δ1 + δ2 + δ3, where δ is the vector of absolute changes
to the intervened upon variables. E.g., for do(a) = do(X1 = x′1), δ1 = |x′1 − x1| and δ2 = δ3 = 0

X1X2

Y

X3

(a) Causal graph

X1 := U1, U1 ∼ N(0, 1)

X2 := X1 + U1, U1 ∼ N(0, 1)

Y := [σ(X1 +X2) ≤ UY ] , UY ∼ Unif(0, 1)

X3 := X1 +X2 + Y + U3, U3 ∼ N(0, 0.1)

(b) Structural Equations

Figure 8: SCM for 3var-noncausal with cost(a) = δ1 + δ2 + δ3.

experience E degree D

senior-level skill S

nr commits GC nr languages GL nr stars GS

(a) Causal graph

E := UE ;UE ∼ GaP (8, 8/3)

D := UD;UD ∼ Cat(0.4, 0.2, 0.3, 0.1)

S := [σ(−10 + 3E + 4D)) ≤ US ] ;US ∼ Unif(0, 1)

GC := 10E(11 + 100D) + UGC
;UGC

∼ GaP (40, 40/4)

GL := σ(10S) + UGL
;UGL

∼ GaP (2, 2/4)

GS := 10S + UGS
;UGS

∼ GaP (5, 5/4)

(b) Structural Equations

Figure 9: SCM for 5var-skill with cost(a) = 5δE + 5δD + 0.0001δGC
+ 0.01δGL

+ 0.1δGS .

density Dflu vacc VIcovid shots VCBMI B

covid-free C

appetite SAfever SFefatigue SFa

(a) Causal graph

D := UD;UD ∼ Γ(4, 4/3)

VI := UVI
;UVI

∼ Bern(0.39)

VC := UVC
;UVC

∼ Cat(0.24, 0.02, 0.15, 0.59)

B := UB ;UB ∼ N(0, 1)

C :=
[
σ(−(−3 +D − VI − 2.5VC + 0.2B2)) ≤ UC

]
;

UC ∼ Unif(0, 1)

SA := [σ(−2C) ≤ USA
] ;USA

∼ Unif(0, 1)

SFe := [σ(5− 9C) ≤ USFe
] ;USFe

∼ Unif(0, 1)

SFa :=
[
σ(−1 +B2 − 2C) ≤ USFa

]
;

USFa
∼ Unif(0, 1)

(b) Structural Equations

Figure 10: SCM for 7var-covid with cost function cost(a) = δD + δVI
+ δVC

+ δB + δSA
+ δSFe

+ δSFa
.
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(a) Pairplot for 3var-causal.
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(b) Pairplot for 3var-noncausal.
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(c) Pairplot for 5var-skill.
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Figure 11: Pairplots for the SCMs.



Table 3: Results for 3var-causal.

3var-causal γ / η γobs. ± ηobs. ± ηindivid.obs. ± ηrefit
obs. ± ∅ cost ±

CE - 0.41 0.09 1.00 0.00 - - 0.60 0.20 3.08 0.41

ind. CR 0.75 0.47 0.10 1.00 0.00 - - 0.70 0.10 2.46 0.37
ind. CR 0.85 0.44 0.08 1.00 0.00 - - 0.72 0.12 2.39 0.25
ind. CR 0.90 0.47 0.09 1.00 0.00 - - 0.72 0.14 2.36 0.35
ind. CR 0.95 0.49 0.07 1.00 0.00 - - 0.67 0.10 2.44 0.31

subp. CR 0.75 0.46 0.11 0.86 0.04 - - 0.64 0.14 2.66 0.41
subp. CR 0.85 0.43 0.08 0.93 0.02 - - 0.69 0.14 2.64 0.32
subp. CR 0.90 0.45 0.09 0.96 0.02 - - 0.70 0.15 2.73 0.42
subp. CR 0.95 0.48 0.09 0.98 0.01 - - 0.64 0.14 2.86 0.41

ind. ICR 0.75 0.79 0.06 0.98 0.02 1.0 0.0 0.96 0.03 3.27 0.50
ind. ICR 0.85 0.86 0.03 1.00 0.01 1.0 0.0 0.97 0.02 3.82 0.30
ind. ICR 0.90 0.90 0.02 1.00 0.01 1.0 0.0 0.98 0.03 3.70 0.31
ind. ICR 0.95 0.95 0.01 1.00 0.00 1.0 0.0 0.99 0.01 4.08 0.24

subp. ICR 0.75 0.75 0.04 0.93 0.04 - - 0.90 0.04 3.34 0.49
subp. ICR 0.85 0.87 0.03 0.98 0.01 - - 0.96 0.02 4.05 0.29
subp. ICR 0.90 0.89 0.02 0.99 0.01 - - 0.97 0.02 3.87 0.25
subp. ICR 0.95 0.94 0.02 1.00 0.00 - - 0.99 0.01 4.22 0.28

Table 4: Results for 3var-noncausal

3var-noncausal γ / η γobs. ± ηobs. ± ηindivid.obs. ± ηrefit
obs. ± ∅ cost ±

CE - 0.17 0.03 0.98 0.04 - - 0.67 0.15 2.28 0.26

ind. CR 0.75 0.25 0.03 1.00 0.00 - - 0.70 0.13 2.28 0.21
ind. CR 0.85 0.24 0.02 1.00 0.00 - - 0.73 0.13 2.29 0.17
ind. CR 0.90 0.24 0.04 1.00 0.00 - - 0.71 0.11 2.24 0.16
ind. CR 0.95 0.23 0.04 1.00 0.00 - - 0.73 0.12 2.18 0.32

subp. CR 0.75 0.22 0.03 0.91 0.03 - - 0.63 0.15 2.18 0.12
subp. CR 0.85 0.19 0.03 0.95 0.02 - - 0.67 0.15 2.33 0.21
subp. CR 0.90 0.19 0.03 0.97 0.01 - - 0.65 0.14 2.42 0.19
subp. CR 0.95 0.19 0.03 0.99 0.01 - - 0.69 0.14 2.26 0.32

ind. ICR 0.75 0.77 0.03 0.93 0.02 0.79 0.03 0.93 0.02 2.16 0.11
ind. ICR 0.85 0.86 0.02 0.99 0.01 0.90 0.02 0.99 0.01 2.51 0.08
ind. ICR 0.90 0.91 0.03 1.00 0.00 0.94 0.01 1.00 0.00 3.00 0.08
ind. ICR 0.95 0.96 0.02 0.98 0.07 0.98 0.01 0.98 0.08 3.32 0.16

subp. ICR 0.75 0.69 0.03 0.77 0.05 - - 0.76 0.05 2.11 0.20
subp. ICR 0.85 0.82 0.03 0.93 0.02 - - 0.92 0.02 2.42 0.11
subp. ICR 0.90 0.89 0.03 0.98 0.01 - - 0.97 0.01 2.86 0.13
subp. ICR 0.95 0.94 0.02 0.97 0.10 - - 0.96 0.12 3.19 0.15



Table 5: Results for 5var-skill

5var-skill γ / η γobs. ± ηobs. ± ηindivid.obs. ± ηrefit
obs. ± ∅ cost ±

CE - 0.00 0.00 1.00 0.00 - - 0.76 0.14 1.34 1.28

ind. CR 0.75 0.00 0.00 1.00 0.00 - - 0.86 0.11 0.27 0.28
ind. CR 0.85 0.00 0.00 1.00 0.00 - - 0.81 0.14 0.24 0.20
ind. CR 0.90 0.00 0.01 1.00 0.00 - - 0.70 0.15 0.10 0.00
ind. CR 0.95 0.00 0.00 1.00 0.00 - - 0.66 0.16 0.11 0.03

subp. CR 0.75 0.00 0.00 1.00 0.00 - - 0.85 0.11 4.06 4.97
subp. CR 0.85 0.00 0.00 1.00 0.00 - - 0.80 0.15 0.24 0.19
subp. CR 0.90 0.00 0.01 1.00 0.00 - - 0.70 0.15 0.10 0.01
subp. CR 0.95 0.00 0.00 1.00 0.00 - - 0.66 0.15 0.12 0.04

ind. ICR 0.75 0.94 0.02 0.94 0.02 0.94 0.02 0.94 0.02 4.95 5.32
ind. ICR 0.85 0.94 0.01 0.93 0.02 0.94 0.01 0.93 0.02 9.80 0.27
ind. ICR 0.90 0.96 0.02 0.96 0.02 0.96 0.02 0.96 0.02 10.38 0.23
ind. ICR 0.95 0.98 0.01 0.98 0.01 0.98 0.01 0.98 0.01 11.23 0.21

subp. ICR 0.75 0.93 0.01 0.93 0.02 - - 0.93 0.01 4.72 5.08
subp. ICR 0.85 0.94 0.01 0.94 0.01 - - 0.94 0.02 9.74 0.17
subp. ICR 0.90 0.96 0.01 0.96 0.01 - - 0.96 0.01 10.46 0.53
subp. ICR 0.95 0.97 0.01 0.97 0.01 - - 0.97 0.01 10.88 0.21

Table 6: Results for 7var-covid

7var-covid γ / η γobs. ± ηobs. ± ηindivid.obs. ± ηrefit
obs. ± ∅ cost ±

CE - 0.00 0.00 1.00 0.00 - - 1.00 0.00 0.60 0.12

ind. CR 0.75 0.01 0.00 1.00 0.00 - - 0.99 0.01 0.56 0.02
ind. CR 0.85 0.00 0.00 1.00 0.00 - - 0.99 0.00 0.55 0.02
ind. CR 0.90 0.00 0.00 1.00 0.00 - - 1.00 0.00 0.55 0.03
ind. CR 0.95 0.00 0.00 1.00 0.00 - - 0.99 0.01 0.54 0.07

subp. CR 0.75 0.01 0.01 0.92 0.02 - - 0.91 0.02 0.52 0.03
subp. CR 0.85 0.00 0.01 0.97 0.01 - - 0.96 0.01 0.75 0.40
subp. CR 0.90 0.00 0.00 0.98 0.01 - - 0.98 0.01 0.55 0.03
subp. CR 0.95 0.00 0.00 0.99 0.01 - - 0.98 0.01 0.51 0.07

ind. ICR 0.75 0.81 0.03 0.81 0.03 0.82 0.04 0.81 0.03 1.26 0.02
ind. ICR 0.85 0.85 0.03 0.85 0.03 0.86 0.03 0.85 0.03 1.14 0.44
ind. ICR 0.90 0.89 0.03 0.89 0.03 0.90 0.02 0.89 0.03 1.61 0.02
ind. ICR 0.95 0.95 0.01 0.95 0.01 0.95 0.01 0.95 0.01 1.97 0.06

subp. ICR 0.75 0.61 0.04 0.61 0.04 - - 0.61 0.04 1.06 0.03
subp. ICR 0.85 0.73 0.03 0.73 0.03 - - 0.73 0.03 1.09 0.34
subp. ICR 0.90 0.81 0.04 0.81 0.04 - - 0.81 0.04 1.42 0.05
subp. ICR 0.95 0.90 0.03 0.90 0.03 - - 0.90 0.03 1.73 0.06
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Figure 12: A schematic drawing illustrating under which
interventions I1, . . . , I8 the Markov blanket (double circle)
is intervention stable. In this setting, we consider the inter-
vention variables to be independent treatment variables: We
would like to know how the different actions influence the
conditional distribution, irrespective of how likely they are to
be applied. Therefore, they are modeled as parent-less vari-
ables. Green indicates intervention stability, red indicates no
intervention stability. Orange indicates intervention stability
of non-causal variables. Dotted variables are not observed.
Left: Since all endogenous variables are observed, MBO(Y )
is stable w.r.t. interventions on every endogenous cause of Y
(Proposition 3). Right: Unobserved variables (X2, X8) open
paths between interventions on causes and Y .

sufficiency, for any optimal predictor the conditional distri-
bution of Y given the variables that the model uses XS (i.e.
P (Y |XS)) is stable w.r.t interventions on causes. Therefore,
optimal predictors are intervention stable w.r.t. ICR actions.

Proof: We prove the statement in six steps.
ICR only intervenes on causes: The goal of meaningful

recourse is to improve Y with minimal cost. Only interven-
tions on causes alter Y . Consequently, actions on non-causes
of Y would not be suggested by meaningful recourse.

Given causal sufficiency, a graph G and an endogenous
Y , the set of endogeneous direct parents, direct effects and
direct parents of effects are the minimal d-separating set
SG: Standard result, see e.g. Peters, Janzing, and Schölkopf
(2017), Proposition 6.27.

The set SG∗ in the augmented graph G∗ coincides with
SG: The minimal d-separating set contains direct causes,
direct effects and direct parents of direct effects. Il is never a
direct cause of Xl. Also, since Il has no endogenous causes,
it cannot be a direct effect. Furthermore, since we restrict
interventions to be performed on causes, Il cannot be a direct
parent of a direct effect.
SG is intervention stable: As follows, all intervention vari-

ables are d-separated from Y in G∗ by SG . Therefore SG is
intervention stable. An example is given in Figure 12.

Then also the markov blanket is intervention stable: Since
d-separation implies independence MB(Y ) ⊆ SG . There-
fore, if XT ⊥ Y |XMB(Y ) then also XT ⊥ Y |SG . If any
element s ∈ SG it holds that s 6∈MB(Y ), then it must hold
that Xs ⊥ Y |XMB(Y ). Therefore, if XT ⊥ Y |XMB(Y ), Xs

then also XT ⊥ Y |XMB(Y ) and therefore any independence
entailed by SG also holds for MB(Y ). Since Pfister et al.
(2021) only require the independence that is implied by d-
separation in their invariant conditional proof, the same im-
plication holds for the MB(Y ). As follows, P (Y |XMB(Y ))

is invariant with respect to interventions on any set of endoge-
nous causes.

Then any superset of the markov blanket is intervention
stable: We prove the statement by contradiction. The markov
blanket d-separates the target variable Y from any other set
of variables. If adding a set of variables S1 to the markov
blanket would open a path to any other set of variables S2,
then it would hold that S := S1 ∪ S2 is not d-separated
from Y (P (Y |MB(Y )) = P (Y |MB(Y ), S1, S2) 6=
P (Y |MB(Y ), S1) = P (Y |MB(Y )))

D.3 Linking observational prediction and γsub,
Proposition 3

Proposition 3. Given causal sufficiency and positivity24, for
interventions on causes the expected subgroup-wide optimal
score h∗ is equal to the subgroup-wide improvement proba-
bility γsub(a) := P (Y post = 1|do(a), xpreGa

), i.e.

E[ĥ∗(xpost)|xpreGa
, do(a)] = γsub(a).

Proof: The proposition follows from Proposition 2. More
specifically

E[h∗(xpost,a)|xpreG , a] (15)

= E[E[Y |xpost,a]|xpreG , a] (16)

total exp.
= E[Y |xpreG , a] (17)

def. γsub
= γsub(a). (18)

D.4 Acceptance Bound, Proof of Proposition 4
Proposition 4. Let g be a predictor with
E[g(xpost)|xpreS , do(a)] = γ(xpreS , a). Then for a de-
cision threshold t the post-recourse acceptance probability
η(t;xpreS , a) := P (g(xpost) > t|xpreS , do(a)) is lower
bounded:

η(t;xpreS , a) ≥
γ(xpreS , a)− t

1− t
.

Proof: Positivity (ppre(xpost) > 0) is necessary for
subpopulation-based ICR since only then we can assume that
the model is actually optimal for any input that it receives.
The problem is discussed in more detail in (Hernán MA 2020;
Neal 2020).

As follows we denote ĥ∗ as the random variable indicating
the predictions of the post-recourse predictors described in
Section 5.
From Propositions 1 and 3, for both individualized and
subpopulation-based post-recourse predictors we know that

E[ĥ(xpost,a)∗|xpreS , do(a)] = γ(xpreS , a).

We decompose the expected prediction

24Positivity ensures that the post-recourse observation lies within
the observational support , where the model was trained (i.e.,
ppre(xpost) > 0), (Neal 2020)).



γ(xpreS , a) (19)

= E[ĥ∗|xpreS , a] (20)

=
E[ĥ∗|ĥ∗ > t]P (ĥ∗ > t)

+E[ĥ∗|ĥ∗ ≤ t]P (ĥ∗ ≤ t)

∣∣∣∣
xpre
S ,a

(21)

=
E[ĥ∗|ĥ∗ > t]P (ĥ∗ > t)

+E[ĥ∗|ĥ∗ ≤ t](1− P (ĥ∗ > t))

∣∣∣∣
xpre
S ,a

(22)

=
E[ĥ∗|ĥ∗ > t]P (ĥ∗ > t)

+E[ĥ∗|ĥ∗ ≤ t]− P (ĥ∗ > t)E[ĥ∗|ĥ∗ ≤ t]

∣∣∣∣
xpre
S ,a

(23)

=
E[ĥ∗|ĥ∗ ≤ t]
+P (ĥ∗ > t)

(
E[ĥ∗|ĥ∗ > t]− E[ĥ∗|ĥ∗ ≤ t]

) ∣∣∣∣∣
xpre
S ,a

(24)

which can be reformulated to yield the acceptance rate η:

γ − E[ĥ∗|ĥ∗ ≤ t]
E[ĥ∗|ĥ∗ > t]− E[ĥ∗|ĥ∗ ≤ t]

∣∣∣∣∣
xpre
S ,a

(25)

= P (ĥ∗ > t|xpreS , a) = η(xpreS , a). (26)

It holds that E[ĥ∗,ind|ĥ∗ ≤ t] = FNR(t) and
E[ĥ∗|ĥ∗ > t] = TPR(t).

We can show that E[ĥ∗|ĥ∗ ≤ t] ≤ t:

0 ≤ FNR(t|xpreS , a) (27)

= P (Y a,post = 1|h∗ ≤ t, xpreS , a) (28)

= E[Y a,post|h∗ ≤ t, xpreS , a] (29)

= E[E[Y a,post|xpost,a]|h∗ ≤ t, xpreS , a] (30)

= E[h∗|h∗ ≤ t, xpreS , a] (31)
≤ t (32)

and analog that 1 ≥ TPR(t) ≥ t. Therefore

η(t, xpreS , a) (33)

=
γ − FNR(t)

TPR(t)− FNR(t)

∣∣∣∣
xpre
S ,a

(34)

≥
γ(xpreS , a)− FNR(t)

1− FNR(t)
≥
γ(xpreS , a)− t

1− t
. (35)

D.5 Individualized post-recourse prediction,
proof of Proposition 5

Proposition 5. In general, the individualized post-recourse
predictor can be estimated as

p(ypost|xpre, xpost, do(a)) (36)

=

∫
U p(y

post, xpost|u, do(a))p(u|xpre)du∑
y′∈{0,1}

(∫
U p(y

′, xpost|u, do(a))p(u|xpre)du
)
(37)

Given binary decision problems with invertible structural
equations, the individualized post-recourse prediction func-
tion reduces to

p(ypost|xpost, xpre, do(a)) (38)

=
p(U−I = f−1

do(a)(y
post, xpost)|xpre, do(a))∑

y′∈{0,1} p(U−I = f−1
do(a)(y

′, xpost)|xpre, do(a))
.

(39)

Proof: It holds that

p(ypost|xpre, xpost, do(a)) (40)

def. cond.
=

p(ypost, xpost|xpre, do(a))

p(xpost|xpre, do(a))
(41)

(42)

We can reformulate the conditional distribution
p(ypost, xpost|xpre, do(a)) as two parts, one that de-
scribes the probability of a state of the context given xpre,
and one that describes the probability of a post-recourse state
xpost, ypost given a certain noise state u and do(a).

p(ypost, xpost|xpre, do(a)) (43)

marginal.
=

∫
U
p(ypost, xpost, u|xpre, do(a))du (44)

chain rule
=

∫
U
p(ypost, xpost|u, xpre, do(a))p(u|xpre)du

(45)

(y, x)post ⊥ xpre|u
=

∫
U
p(ypost, xpost|u, do(a))p(u|xpre)du.

(46)

In combination we yield

p(ypost|xpre, xpost, do(a)) (47)

=

∫
U p(y

post, xpost|u, do(a))p(u|xpre)du∫
Y
(∫
U p(y

′, xpost|u, do(a))p(u|xpre)du
)
dy′

(48)

=

∫
U p(y

post, xpost|u, do(a))p(u|xpre)du∑
y′∈0,1

(∫
U p(y

′, xpost|u, do(a))p(u|xpre)du
) (49)

For a setting with invertible structural equations this reduces
to

p(ypost|xpost, xpre, do(a)) (50)

=
p(ypost, xpost|xpre, do(a))

p(xpost|xpre, do(a))
(51)

=
p(U−I = f−1(ypost, xpost)|xpre, do(a))∑

y′∈{0,1} p(U−I = f−1(ypost, xpost)|xpre, do(a))
.

(52)

where −I is the index set for variables that have not been
intervened on (since the noise terms for the intervened upon
variables are isolated variables in the interventional graph).
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E.1 Negative Result: Algorithmic recourse is
neither meaningful nor robust

In the introduction we claimed that CR recommendations
(Karimi et al. 2020b; Karimi, Schölkopf, and Valera 2021)
may not lead to improvement. Now, we formally demonstrate
the case on the Covid hospital admission example (Figure
1) which we extend with the full structural causal model
(Example 1). Furthermore, we show that CR is not robust
to refits of the model on mixed pre- and post-recourse data.
All code is publicly available via https://anonymous.4open.
science/r/icr-aaai/README.md.

Example 1. Let V indicate whether someone is fully vacci-
nated, Y indicate whether someone is free of Covid and S
whether someone is asymptomatic. The data is generated by
the following structural causal model (SCM) entailing the
causal graph depicted in Figure 1:

V := UV , UV ∼ Bern(0.5) (53)
Y := V + UY mod 2, UY ∼ Bern(0.09) (54)
S := Y + US mod 2, US ∼ Bern(0.05) (55)

For prediction, a sklearn logistic regression model is fit
on 2000 samples, yielding ĥ with βv ≈ 3.7, βs ≈ 5.1,
β0 ≈ −4.3. Visitors are allowed to enter the hospital if
ĥ < 0.5. Intervening on (flipping) V and S costs 0.5 and 0.1
respectively.

Lack of improvement: Given a decision threshold of 0.5,
the model admits everyone without symptoms (S = 1), ir-
respective of their vaccination status V . Therefore, in or-
der to revert rejections (S = 0), both individualized and
subpopulation-based CR suggest removing the symptoms S
(do(S = 1), for instance by taking cough drops). However,
since they only treat the symptoms S, the actual Covid risk Y
is unaffected: none of the recourse-implementing individuals
actually improve. We say the predictor is gamed.

Lack of robustness: For individuals who implement re-
course the association between symptom state S and Covid
risk Y is broken. Thus, the predictive power of the model
for recourse-seeking individual drops from ≈ 95 percent pre-
recourse to ≈ 5 percent post-recourse.25 A refit of the model
on a mix pre- and post-recourse data (2000 samples each)
yields ĥ with βV ≈ 4.1, βS ≈ 3.3, β0 ≈ −4.8. Since the as-
sociation between symptom state and disease status is broken
post-recourse, the new model rejects individuals if they are
not vaccinated, irrespective of their symptom state. For that
reason, recourse recommendations that were designed for the
original model only lead to acceptance by the refitted model
for those individuals who happened to be vaccinated anyway.
The example demonstrates that CR recommendations are
prone to gaming the predictor and therefore may neither lead
to improvement nor be robust to model refits.

25The previously wrongly-rejected individuals are correctly clas-
sified after implementing recourse.

E.2 Interpretability of improvement confidence γ
Counterfactuals are concerned with changing the inputs to
the model such that the model prediction changes in the de-
sired way. Since the prediction function is deterministic and
accessible, the post-recourse prediction can be determined
exactly.
In contrast CR and ICR deal with the effects of real-world
interventions on real-world variables. As such, the effects of
recourse actions on the covariates (and the underlying predic-
tion target) cannot be determined exactly. Therefore both CR
and ICR have to deal with uncertainty.
CR deals with this uncertainty by phrasing the optimiza-
tion objective for CR in terms of an expectation over the
prediction distribution and by using an action-adaptive con-
fidence threshold. This threshold thresh bounds the ex-
pected prediction away from the model’s decision threshold
(e.g. t = 0.5). Using the conservativeness parameters, the
user can roughly steer how far the expected prediction shall
be away from the decision boundary.
In contrast, ICR deals with the uncertainty by letting the user
specify the confidence γ, which can be intuitively interpreted
as improvement probability (whereas the expected prediction
cannot be interpreted as acceptance probability). A lower-
bound on the acceptance probability for a combination of
γ and t is given in Proposition 4. Furthermore, we can esti-
mate the individualized and subpopulation-based acceptance
rates for a specific situation (a, xpre) as detailed in B.1 and
B.3. The human-interpretable improvement and acceptance
confidences are vital for the explainee to make an informed
decision.
In order to allow a direct comparison of the methods, we
rephrase the CR objective to optimize the acceptance proba-
bility η in our experiments.

E.3 Imbalance between standard predictors and
individualized ICR recommendations

In Section 6 we argued that there is an imbalance in predictive
capability between (optimal) observational predictors and the
pre-recourse SCM (which used to predict γind). We illustrate
the problem on a simple example.
Example 2. Let there be a three variable chain X1 → Y →
X2 where at every step the value is incremented by one with
50% chance and the maximum value is set to 2 (X1 := U1,
Y := X1+UY ,X2 := min(2, Y +U2) whereU1, U2, UY ∼
Bern(0.5)). Let us assume a factual observation xpre =
(0, 2) and action a = do(X1 = 1) yielding xpost = (1, 2).
For the observation xpre = (0, 2) we can infer that UY
must have been 1, since two increments are needed to get
from 0 to 2. However, from the post-intervention observation
xpost = (1, 2) we cannot infer where the increment happened
(UY or U2). As a consequence, an optimal predictive model
that only has access to xpost would predict that ypost for
xpost = (1, 2) could be 1 or 2 with equal likelihood. In
contrast, with access to xpre and the SCM we can infer that
ypost = 2 since UY = 1.

In the above example, given knowledge of the SCM, the
pre-intervention observation xpre and the performed action a
we can already abduct UY perfectly and therefore correctly



determine the post-intervention state of Y (even without ac-
cess to the post-intervention observation xpost). In contrast,
with the post-recourse observation alone it is impossible to
reconstruct UY and therefore impossible to determine the
post-intervention state of Y .26 In the context of ICR this
means that the observational predictor’s post-recourse predic-
tions are not directly linked with γ: they may not honor the
implementation of actions with γind = 1. As a consequence,
we suggested to use the SCM for post-recourse prediction in
Section 6.
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